
Know Your Enemy Lite:

Proxy Threats - Socks v666

Reverse Tunneling Into NAT Home Networks

The Honeynet Project
http://www.honeynet.org

Last Modified: 22 January, 2008

INTRODUCTION

A common assumption within the network and security community is that Network Address

Translation (NAT) and filtering devices such as routers and firewalls provide protection from direct

inbound attack and control. Networked systems behind devices of this type are usually assigned private

(non-routable) IP addresses and may be screened from arbitrary inbound connections which prevent

attackers from initiating connections to these presumed 'protected' network assets. To bypass this

perimeter defense, attackers have depended on malware to infect the host systems and initiate an

outbound connection to a command and control system, perhaps becoming part of a botnet to wait for

and then execute commands. The Honeynet Project is studying a different technique that is becoming

increasingly widespread in the criminal community. Criminals are leveraging systems behind these

security devices as reverse tunnel proxies and are able to perpetrate criminal activities that include

sending spam email, attacking web applications, or even targeting internal private network assets.

In this paper we will detail: the basic operational concept of how these reverse tunnel proxies work, one

such control protocol in use, the advantages to the criminal community, a detailed example and it’s

similarities to legacy SOCKS protocols, and how this activity can be further identified including

mitigation strategies.

SOCKS BACKGROUND

First of all a proxy is an application or system which services the requests of clients by forwarding the

requests to other servers. SOCKS is an internet protocol which allows for the transparent proxying of

applications. The SOCKS protocol was developed at MIPS in the early 1990's and became public in 1992

when SGI purchased MIPS Computer Systems. RFC's for SOCKS v4 (NEC) and v5 followed.

SOCKS4 provided for connections to arbitrary TCP services and operates on layer 5 (SESSION) of the

T H E H O N E Y N E T P R O J E C T | KYE-LITE paper

http://www.honeynet.org
http://www.honeynet.org

OSI model. This places it below the Presentation (ex. SSL) and Application (ex. HTTP) layers which is

what makes it transparent to application protocols. Many alternative proxy methods at the time

required application changes which becomes more difficult to support as new applications and

protocols are developed. SOCKS4 supports TCP connections only and optionally simple authorization

using a userid. SOCKS4a added support for sending proxy requests before resolving the domain name of

the target. SOCKS5 (RFC1928) built on SOCKS4/4a and added support for UDP proxy connections,

authentication methods, and Ipv6. In a standard SOCKS connection a client connects to a SOCKS proxy

server and makes a CONNECT request which specifies the destination IP (or domain name) and port it

would like the server to connect to on its behalf. In typical proxybot infections we investigate proxy

servers are installed on compromised machines on random high ports (above 1024) and the miscreants

track their active proxies by making them “call home” and advertise their availability, IP address, and

port(s) their proxies are listening on. These aggregated proxy lists are then used in-house, leased, or

sold to other criminals. Proxies are used for a variety of purposes by a wide variety of people (some who

don't realize they are using compromised machines), but spam (either SMTP-based or WEB-based) is

definitely the top application. The proxy “user” will configure their application to point at lists of IP:Port

combinations of proxybots which have called home. This results in a TCP connection from the “outside”

to a proxybot on the “inside” and a subsequent TCP (or UDP) connection to the target destination

(typically a mail server on the “outside”). How reverse-connect proxies differ will be highlighted in the

next section.

HOW AND WHY SOCKS v666 PROXY NETWORKS WORK

Reverse-connect (or reverse tunnel) proxies are often a result of a compromise of a victim host residing

behind NAT, firewall, or other filtering devices. Traditional proxy bots also typically involve

compromises and may be deployed by the same exploits or methods (malware by email, etc.). However

the key differentiator is the presence of a NAT or firewall device which would prevent the traditional

inbound SOCKS requests described previously. What makes reverse-connect proxies unique is what

happens afterwards. With traditional botnet malware, the infected system might initiate an outbound

connection (using a protocol such as IRC, HTTP, or P2P) to a command and control system (C&C); wait

for a command; then execute those commands on behalf of the controller. These outbound connections

are allowed by default with many NAT and filtering devices. Reverse tunnel proxy botnets differ from

classic IRC-based botnets in that they establish dedicated proxies, to which only their respective

controller(s) may initiate tunnel service requests. This is accomplished after the victim host first

establishes a persistent outbound TCP connection which enables the controller to establish new SOCKS

connections from the outside as long as the persistent connection is maintained. These methods have

been allowed to grow in popularity because many networks fail to enforce strong egress policies and

many lack effective protocol inspection or enforcement capabilities. See figure 1 for a diagram

demonstrating this capability.

So why are we calling these proxies ... and why the name Proxy v666? In the example below we

demonstrate that these malware variants implement many similar functions found in the traditional

T H E H O N E Y N E T P R O J E C T | KYE-LITE paper

SOCKS v5 proxy control protocol. The SOCKS v5 protocol uses a header (0x0501) to identify the

protocol version when initiating a TCP connection . The reverse tunnel proxy protocol specifies its own

custom header of (0x9a02) and the hex string (0x029a) equals "666" in ASCII. We can see that the

criminal community maintains its own morbid sense of humor. The primary motivator for forming large

networks of reverse-connect proxy bots is spam. We are seeing criminals actively using these reverse-

connect proxies to relay millions of spam messages to victims around the world. There is a pre-existing

underground economy revolving around proxies with numerous marketplaces, and tools which collect,

validate, chain together, and abuse proxies of all types. There is a market incentive to provide SOCKS

proxies compatible with existing tools. Additionally, the worldwide migration from dial-up networking

to broadband connections utilizing NAT gateways (cable/DSL routers) has also been driving the need

for criminals to come up with new ways to illegally leverage these resources. Additional advantages

include:

1. The benefit of hiding in plain sight through the implementation of a presumably undetectable

or obscure control protocol with the specialized purpose of delivering ease of use in establishing

arbitrary and anonymous connectivity to criminals.

2. External SSH, SSL, and other services implementing native encryption can be attacked via a

reverse-connect proxy without triggering network IDS or other systems performing content

inspection.

3. Corporate incident responders may incorrectly accuse owners of proxybot hosts as being the

actual attacker and miss the external control mechanism and real perpetrator.

DETAILED EXAMPLE

The following example of a reverse-connect proxy is from just one sample among many that we are

seeing in the wild. Most of the data we have collected suggests they are based upon existing SOCKS

protocol implementations. This bot sample was additionally designed to evade network port filtering.

The proxy bot will iterate through a list of ports until a connection to the controller succeeds. For

instance, if port 80 was unreachable it would then attempt to connect to the following ports (in-order):

8080, 3128, 21, 22, 53, 110, 5190, 143, 119, 137, 138, 443, 530, 873, 989, 990. One can see from the list

of ports the miscreants have chosen that they are taking advantage of the common practice of allowing

outbound connections to popular services by port and protocol without additional inspection. However

many networks and most home consumer devices don't implement egress filtering at all and the first

port (80/TCP) usually works fine.

T H E H O N E Y N E T P R O J E C T | KYE-LITE paper

The Reverse Tunnel Proxy Malware Sample

Sample: 005e9054d4290c76db9e7971f6a10a4e

File type(s): MS-DOS executable (EXE), OS/2 or MS Windows

Size: 14848 Bytes

MD5: 005e9054d4290c76db9e7971f6a10a4e

SHA1: 13b22857d857ab6a8a315f086c8fcdac6064aaab

In the following malware sample, we examine just the first two TCP sessions of the many that were

extracted using the Chaosreader packet capture session reassembly tool (http://chaosreader.sf.net/).

The packet capture was acquired during the execution of the referenced sample in an instrumented

malware analysis environment (sandbox). The sessions below depict the reverse tunnel proxy

announcement/registration phase which is followed immediately by controller-initiated spam relay

attempts. See Figure 1 for a visual example.

Figure 1: Our malware first registers with the controller, then a reverse tunnel proxy connection is
established, which enables SPAM relay attempts to be sent through the compromised system from the
outside.

T H E H O N E Y N E T P R O J E C T | KYE-LITE paper

http://chaosreader.sf.net/
http://chaosreader.sf.net/

TCP SESSION REASSEMBLY AND DECODING

T H E H O N E Y N E T P R O J E C T | KYE-LITE paper

TCP Session 1: Total 46 bytes

Here we detail the initial communication from the infected proxybot client to the proxy control server. In this initial

communication the infected client sends out a 30 byte request notifying the controller it has been infected. The server

sends a 16 byte response acknowledging the infected system. Both the client connection and the server response are

captured in the network traffic record below.

192.168.1.31:1046 -> 208.B.C.203:80

00000000 9A02 0100 0C04 0600 F186 F2BF 640F 5145d.QE

00000010 8814 A548 A57D 01F0 C0A8 011F 0416 9a02 ...H.}..........

00000020 0500 9a02 0500 9a02 0500 9a02 0500

Infected Client Proxybot Decodes as:
Offset 0x00-0x07 = 0x9A02 0100 0C04 0600 : 8 byte announcement header

Offset 0x08-0x17 = 0xF186 F2BF 640F 5145 8814 A548 A57D 01F0 : 16 byte Unique UID or
Serial #, perhaps to enable the tracking of unique infections that migrate across dynamic IP space?

Offset 0x18-0x1d = 0xC0A8 011F 0416 : 6 bytes = 4 byte SrcIP + 2 byte SrcPort (hex encoded)

Green characters are the hexadecimal offset of the captured network traffic
 Red characters are the client proxybot outbound access.
 Blue characters are the server response.

Hex Encoded IP:port of Client

0xC0A8 011F 0416 == 192.168.1.31:1046
0xC0 == 192

0xA8 == 168
0x01 == 1
0x1F == 31

0x0416 == 1046

T H E H O N E Y N E T P R O J E C T | KYE-LITE paper

TCP Session 2: Total 48 bytes

In this capture we look at the specific commands sent between the infected client and the controlling server. Once

again, both the outbound client communications and the server response are included in the same network

capture. Here is the entire capture, which we then break down into several sections. We then break down the

client part of the communication.

Now we looks at the server response. Here we see what appears to be a modified SOCKS5 protocol implementation

perhaps to avoid protocol detection via IDS and other analysis. SOCKS5 TCP tunnel requests are a static 10 byte

sequence, differing in what follows only by the 4 byte protocol header. In this case the server has issued the infected

proxybot client instructions that will have the proxybot attempt to establish a proxy TCP tunnel to

206.190.53.191:25 (A Yahoo! SMTP VIP) for which the upstream proxy controller alone may utilize.

192.168.1.31:1047 <-> 208.B.C.203:80

00000000 9a02 0600 f186 f2bf 640f 5145 8814 a548d.QE...H
00000010 a57d 01f0 c800 0000 9a02 0700 cebe 35bf .}............5.
00000020 0019 9a02 0800 0000 0000 0000 c0a8 011f
00000030 0419 3232 3020 6661 6b65 736d 7470 2e6e ..220 fakesmtp.n

24 Byte Client Request Decoded

Offset 0x00-0x03 = 0x9a02 0600 : 4 byte request header
0x9a02 : Common header in all protocol communications.
0x0600 : Status, availability, or request identifier of this modified/extended socks5 implementation.

Offset 0x04-0x13 = 0xf186 f2bf 640f 5145 8814 a548a a57d 01f0 16 byte Serial#
This is observed to be static across all communications from the infected client and across multiple
reboots. Could this be a Unique Identifier?

Offset 0x14-0x17 = 0xc800 0000 : 4 byte footer
Consistent session data footer across client -> controller registrations

10 byte Server Response:

Offset 0x18-0x1b = 0x9a02 0700 : 4 byte tunnel establishment request header
0x9a02 : Common protocol header
0x0700 : TCP tunnel establishment request

Offset 0x1c-0x21 = 0xcebe 35bf 0019 : 6 bytes identifying tunnel destination IP and port
0xcebe 35bf : Hex encoded IP address for 206.190.53.191
0x0019 : 25 (TCP port 25 == Spammer activity!)

T H E H O N E Y N E T P R O J E C T | KYE-LITE paper

The proxy bot client responds with a minimum 16 byte payload that appears to have many similarities to the

SOCKS5 protocol, in this instance that relationship is established due to the method by which the client returns

a success/fail status for the tunnel service request. Following that response is the proxy destination target

service response (in this case an SMTP 220 service availability message). The client has reported to the

controller that it believes it has established a successful TCP tunnel of 192.168.1.31:1049 -> 206.190.53.191:25,

for which the upstream proxy controller host at 208.B.C.203 now has the option of shoveling data through this

tunnel and appearing to originate as the Proxy Bot Source IP. The data following the 16 byte sequence is the

service banner resulting from the proxy bot client connection upon which the upstream reverse proxy controller

can presumably use to determine whether it wants to actually use the tunnel. By this mechanism, a skillful proxy

manager can identify and ignore honeynet deployments by evaluating server responses. Next-Gen SMTP

Honeynet services should enumerate the intended target host for their service listener responses and perform

impersonation of the intended service target.

The relationship of the proxy controller, proxy bot client and target service is:
208.B.C.203:80 <- (192.168.1.31:1048 | 192.168.1.31:1049) -> 206.190.53.191:25

And presented in simpler form: (not quite accurate, but easier for human visualization)

208.B.C.203 -> 192.168.1.31:1049 -> 206.190.53.191:25

16 byte Client Minimum Response: (followed by arbitrary target service response data)

Offset 0x22-0x25 = 0x9a02 0800: 4 byte protocol header
0x9a02 : Common protocol header
0x0800 : Client tunnel request status response (successful tunnel establishment)

Offset 0x26-0x2a = 6 bytes – As of yet undetermined protocol padding?
0x0000 0000 0000: Ongoing study of use/failure cases may establish a histogram based
understanding of how these fields may be used, if at all and may prove to be just a protocol
requirement for null padding.

Offset 0x2b-0x31 = 0xc0a8 011f 0419: 6 bytes source IP and port
Identifies src IP and ephemeral port servicing the proxy request and holding the open TCP tunnel.
(This is yet another Socks protocol behavior)

0xc0a8 011f 0419 == 192.168.1.31:1049
0xc0 == 192
0xa8 == 168
0x01 == 1
0x1f == 31
0x0419 == 1049

DETECTION AND MITIGATION

DETECTION: Snort IDS:

Several signatures are available in the Emerging Threats Snort IDS rulesets:

alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS (msg:”Emerging-EDGE

CURRENT_EVENTS Unknown Proxy Method/Bot Initial Packet”; flow:established,to_server; dsize:24;

content:”|9a 02 06 00|”; offset:0; depth:4; flowbits:set,BS.BPcheckin; flowbits:noalert;

classtype:trojan-activity; reference:url,doc.emergingthreats.net/2006396; sid:2006395; rev:1;)

alert tcp $EXTERNAL_NET $HTTP_PORTS -> $HOME_NET any (msg:”Emerging-EDGE

C U R R E N T _ E V E N T S U n k n o w n P r o x y M e t h o d / B o t C o n n e c t C o m m a n d P a c k e t ” ;

flowbits:isset,BS.BPcheckin; flow:established,from_server; dsize:10; content:”|9a 02 07 00|”; offset:0;

depth:4; flowbits:set,BS.BPset; classtype:trojan-activity; reference:url,doc.emergingthreats.net/

2006396; sid:2006396; rev:1;)

alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS (msg:”Emerging-EDGE

CURRENT_EVENTS Unknown Proxy Method/Bot Successful Connect Packet Packet”;

flowbits:isset,BS.BPset; flow:established,to_server; dsize:16; content:”|9a 02 08 00|”; offset:0; depth:4;

flowbits:set,BS.BPcheckin; tag:session; classtype:trojan-activity; reference:url,doc.emergingthreats.net/

2006396; sid:2006397; rev:1;)

alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS (msg:”Emerging-EDGE

CURRENT_EVENTS Unknown Proxy Method/Bot Checkin Packet”; flow:established,to_server; dsize:

30; content:”|9a 02 01 00|”; offset:0; depth:4; flowbits:set,BS.BPcheckin1; flowbits:noalert;

classtype:trojan-activity; reference:url,doc.emergingthreats.net/2006396; sid:2006398; rev:1;)

alert tcp $EXTERNAL_NET $HTTP_PORTS -> $HOME_NET any (msg:”Emerging-EDGE

C U R R E N T _ E V E N T S U n k n o w n P r o x y M e t h o d / B o t C h e c k i n S u c c e s s P a c k e t ” ;

flowbits:isset,BS.BPcheckin1; flow:established,from_server; dsize:4; content:”|9a 02 05 00|”; offset:0;

depth:4; classtype:trojan-activity; reference:url,doc.emergingthreats.net/2006396; sid:2006399; rev:

1;)

Service providers should become suspicious when protocols such as SMTP or SSL are detected flowing

inbound to user networks over non-standard ports. There are IDS signatures in the Emerging Threats

rulesets for this purpose. Check out the “unusual-client-port-connection” class of EmergingSnort rules

for examples.

T H E H O N E Y N E T P R O J E C T | KYE-LITE paper

NETWORK FLOW

A number of methods exist for collecting and aggregating IP accounting information from switches,

routers, or probes. One popular solution which is implemented on many network devices is Netflow.

Netflow was developed at Cisco in 1996 and allows for visibility into large network segments which

would be impractical to monitor with packet capture methods. Netflow records contain several fields of

interest to us in detecting reverse-connect proxy bots: Timestamps for the flow start and finish time,

Number of bytes and packets observed in the flow, Source & destination IP addresses, Source and

destination port numbers, IP protocol, Cumulative TCP flags.

1. High resolution netflow may provide generic proxy and stepping stone detection methods.

2. Sampled netflow may also be used to detect policy violations and large or long duration flows.

3. Watchlists of known bad IPs such as proxy bot controllers can be used to look for suspicious

flows.

4. Baselines of typical activity per system or per segment can be created based on metrics such as:

bytes transferred per day, number of unique IP addresses contacted per day, and the number of

packets per day per port/protocol.

5. Monitoring for deviations from these baselines can help identify systems whose personality

changes abruptly such as one becoming a spam sender or proxy.

DNS:

1. DNS query logs can be monitored for clients attempting to resolve known bad domains.

2. Statistics can also be maintained to create baselines of DNS resolution activity and to monitor

for increases in resolution attempts either by client or by domain. This is especially useful in

monitoring MX (mail exchange) record queries for detecting spambots or proxied spam

attempts.

MITIGATION:

1. Known bad domains can be squashed at the DNS level by using blacklisting or poisoning

techniques on your internal DNS servers or security devices which support this feature. There is

also a benefit to forcing internal clients to use DNS servers under your control so these

blacklists can be enforced.

2. Many threats can be mitigated by developing a security policy which includes approved

applications and ports/protocols required for people to do their jobs and implementing

technical controls to enforce these policies. Firewall filters can be of some help, but many recent

threats require application-layer inspection using proxies or Intrusion Prevention Systems

(IPS)

3. Use best practices for restricting outbound mail. Makes the proxy bot less useful for external

abuse.

4. Deploying Intrusion Detection/Prevention Devices (IDS/IPS) technology internally to monitor

for insider abuse. This will also cover the case of an external party proxying attacks through an

internal asset.

T H E H O N E Y N E T P R O J E C T | KYE-LITE paper

CONCLUSION

Malware which utilizes connect-back (aka call-home) features poses a significant threat to networks of

all sizes and shapes. Simple inbound filtering or NAT is inappropriately relied upon in many cases to

“secure” a network. The malware described in this paper is just one example of an active criminal

network leveraging this technique to allow arbitrary inbound connectivity through a filtering or NAT

device. The authors are aware of several other criminal networks utilizing these techniques and success

breeds imitation.

ACKNOWLEDGEMENTS

A paper of this complexity requires the input and cooperation from many people and organizations. In

particular the Honeynet Project would like to thank the following people:

• Matt Jonkman and EmergingThreats.

• Many others. You know who you are.

REFERENCES

 SOCKS5 (RFC1928) http://tools.ietf.org/html/rfc1928

CHAOSREADER http://chaosreader.sf.net/

Snort IDS Signatures (EmergingThreats)

http://www.emergingthreats.net/index.php/2007/07/16/new-proxy-bot-method-and-sigs/

T H E H O N E Y N E T P R O J E C T | KYE-LITE paper

http://tools.ietf.org/html/rfc1928
http://tools.ietf.org/html/rfc1928
http://chaosreader.sf.net
http://chaosreader.sf.net
http://www.emergingthreats.net/index.php/2007/07/16/new-proxy-bot-method-and-sigs/
http://www.emergingthreats.net/index.php/2007/07/16/new-proxy-bot-method-and-sigs/

